On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional

نویسندگان

  • Thomas Brox
  • Daniel Cremers
چکیده

In region-based image segmentation, two models dominate the field: the Mumford-Shah functional and statistical approaches based on Bayesian inference. Whereas the latter allow for numerous ways to describe the statistics of intensities in regions, the first includes spatially smooth approximations. In this paper, we show that the piecewise smooth Mumford-Shah functional is a first order approximation of Bayesian a-posteriori maximization where region statistics are computed in local windows. This equivalence not only allows for a statistical interpretation of the full Mumford-Shah functional. Inspired by the Bayesian model, it also offers to formulate an extended Mumford-Shah functional that takes the variance of the data into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional

We propose an algorithm for efficiently minimizing the piecewise smooth Mumford-Shah functional. The algorithm is based on an extension of a recent primal-dual algorithm from convex to non-convex optimization problems. The key idea is to rewrite the proximal operator in the primal-dual algorithm using Moreau’s identity. The resulting algorithm computes piecewise smooth approximations of color i...

متن کامل

Efficient Segmentation of Piecewise Smooth Images

We propose a fast and robust segmentation model for piecewise smooth images. Rather than modeling each region with global statistics, we introduce local statistics in an energy formulation. The shape gradient of this new functional gives a contour evolution controlled by local averaging of image intensities inside and outside the contour. To avoid the computational burden of a direct estimation...

متن کامل

Fast Segmentation for the Piecewise Smooth Mumford-Shah Functional

This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions + u and − u . In our scheme, furth...

متن کامل

A level set algorithm for minimizing the Mumford-Shah functional in image processing

We show how the piecewise-smooth Mumford-Shah segmentation problem [25] can be solved using the level set method of S. Osher and J. Sethian [26]. The obtained algorithm can be simultaneously used to denoise, segment, detect-extract edges, and perform active contours. The proposed model is also a generalization of a previous active contour model without edges, proposed by the authors in [12], an...

متن کامل

A Curve Evolution Approach to Smoothing and Segmentation Using the Mumford-Shah Functional

In this work, we approach the classic Mumford-Shah problem from a curve evolution perspective. In particular, we let a given family of curves define the boundaries between regions in an image within which the data are modeled by piecewise smooth functions plus noise as in the standard Mumford-Shah functional. The gradient descent equation of this functional is then used to evolve the curve. Eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007